NUCLEAR POWER-REACTORS

archivo del portal de recursos para estudiantes
robertexto.com

PRINT

 

        The first large-scale nuclear reactors were built in 1944 at Hanford, Washington, for the production of nuclear weapons material. The fuel was natural uranium metal; the moderator, graphite. Plutonium was produced in these plants by neutron absorption in uranium-238; the power produced was not used.

Light and Heavy Water Reactors
        
        A variety of reactor types, characterized by the type of fuel, moderator, and coolant used, have been built throughout the world for the production of electric power. In the United States, with few exceptions, power reactors use nuclear fuel in the form of uranium oxide isotopically enriched to about 3 percent uranium-235. The moderator and coolant are highly purified ordinary water. A reactor of this type is called a light water reactor (LWR).

        In the pressurized water reactor (PWR), a version of the LWR system, the water coolant operates at a pressure of about 150 atmospheres. It is pumped through the reactor core, where it is heated to about 325° C (about 620° F). The superheated water is pumped through a steam generator, where, through heat exchangers, a secondary loop of water is heated and converted to steam. This steam drives one or more turbine generators, is condensed, and pumped back to the steam generator. The secondary loop is isolated from the reactor core water and, therefore, is not radioactive. A third stream of water from a lake, river, or cooling tower is used to condense the steam. The reactor pressure vessel is about 15 m (about 49 ft) high and 5 m (about 16.4 ft) in diameter, with walls 25 cm (about 10 in) thick. The core houses some 82 metric tons of uranium oxide contained in thin corrosion-resistant tubes, clustered into fuel bundles.

    
        In the boiling water reactor (BWR), a second type of LWR, the water coolant is permitted to boil within the core, by operating at somewhat lower pressure. The steam produced in the reactor pressure vessel is piped directly to the turbine generator, is condensed, and then pumped back to the reactor. Although the steam is radioactive, there is no intermediate heat exchanger between the reactor and turbine to decrease efficiency. As in the PWR, the condenser cooling water has a separate source, such as a lake or river.

        The power level of an operating reactor is monitored by a variety of thermal, flow, and nuclear instruments. Power output is controlled by inserting or removing from the core a group of neutron-absorbing control rods. The position of these rods determines the power level at which the chain reaction is just self-sustaining.

        During operation, and even after shutdown, a large 1000-megawatt (MW) power reactor contains billions of curies of radioactivity. Radiation emitted from the reactor during operation and from the fission products after shutdown is absorbed in thick concrete shields around the reactor and primary coolant system. Other safety features include emergency core cooling systems to prevent core overheating in the event of malfunction of the main coolant systems and, in most countries, a large steel and concrete containment building to retain any radioactive elements that might escape in the event of a leak.

        Although over 100 nuclear power plants were operating or being built in the United States at the beginning of the 1980s, in the aftermath of the Three Mile Island accident, safety concerns and economic factors combined to block any additional growth in nuclear power. No orders for nuclear plants have been placed since 1978, and some plants that have been completed have not been allowed to operate. In 1990 about 20 percent of the electric power generated in the United States came from nuclear power plants, whereas in France almost three-quarters of the energy being generated was from nuclear power plants.

        In the initial period of nuclear power development in the early 1950s, enriched uranium was available only in the United States and the Union of Soviet Socialist Republics (USSR).


        The nuclear power programs in Canada, France, and Great Britain therefore centered about natural uranium reactors, in which ordinary water cannot be used as the moderator because it absorbs too many neutrons. This limitation led Canadian engineers to develop a reactor cooled and moderated by deuterium oxide (D2O), or heavy water. The 20-reactor Canadian deuterium-uranium reactor (CANDU) system has operated satisfactorily, and similar plants have been built in India, Argentina, and elsewhere.

        In Great Britain and France the first full-scale power reactors were fueled with natural uranium metal rods, graphite-moderated, and cooled with carbon dioxide gas under pressure. These initial designs have been superseded in Great Britain by a system that uses enriched uranium fuel. In France the initial reactor type chosen was dropped in favor of the PWR of U.S. design when enriched uranium became available from French isotope-enrichment plants. Russia and the other successor states of the USSR had a large nuclear power program, using both graphite-moderated and PWR systems.

Propulsion Reactors

        Nuclear power plants similar to the PWR are used for the propulsion plants of large surface naval vessels such as the aircraft carrier USS Nimitz. The basic technology of the PWR system was first developed in the U.S. naval reactor program directed by Admiral Hyman G. Rickover. Reactors for submarine propulsion are generally physically smaller and use more highly enriched uranium to permit a compact core. The United States, Great Britain, Russia, and France all have nuclear-powered submarines with such power plants.

        Three experimental seagoing nuclear cargo ships were operated for limited periods by the United States, Germany, and Japan. Although they were technically successful, economic conditions and restrictive port regulations brought an end to these projects. The Soviets built the first succesful nuclear-powered icebreaker, Lenin, for use in clearing the Arctic sea-lanes.

 

Research Reactors

        A variety of small nuclear reactors have been built in many countries for use in education and training, research, and the production of radioactive isotopes. These reactors generally operate at power levels near 1 MW, and are more easily started up and shut down than larger power reactors.

        A widely used type is called the swimming pool reactor. The core is partially or fully enriched uranium-235 contained in aluminum alloy plates, immersed in a large pool of water that serves as both coolant and moderator. Materials may be placed directly in or near the reactor core to be irradiated with neutrons. Various radioactive isotopes can be produced for use in medicine, research, and industry (see ISOTOPIC TRACER). Neutrons may also be extracted from the reactor core by means of beam tubes to be used for experimentation.

LIBRERÍA PAIDÓS

central del libro psicológico

REGALE

LIBROS DIGITALES

GRATIS

música
DVD
libros
revistas

EL KIOSKO DE ROBERTEXTO

compra y descarga tus libros desde aquí

VOLVER

SUBIR